
Using InstallAware 7
To Deploy Microsoft .NET Framework Applications

August 2007

The information contained in this document represents the current
view of InstallAware Software Corporation on the issues discussed
as of the date of publication. Because InstallAware must respond to
changing market conditions, it should not be interpreted to be a
commitment on the part of InstallAware, and InstallAware cannot
guarantee the accuracy of any information presented after the date
of publication.
This guide is for informational purposes only. INSTALLAWARE
MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS DOCUMENT.
InstallAware may have patents, patent applications, trademarks,
copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written
license agreement from InstallAware, the furnishing of this document
does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.
© 2007 InstallAware Software Corporation. All rights reserved.
InstallAware, MSIcode, Genuine Scripting for Windows Installer,
WebAware Installations, Web Media Blocks, Partial Web Deploy,
and One-Click Patching are either registered trademarks or
trademarks of InstallAware Software Corporation in the United States
and/or other countries.
Microsoft, Windows, and other Microsoft product names are
trademarks or registered trademarks of Microsoft Corporation in the
U.S. and other countries. All other marks are the property of their
respective owners.

TABLE OF CONTENTS

OVERVIEW 1

CREATING A .NET PROJECT 2

DEPLOYMENT SCENARIOS 25

Independent Software Vendors (ISVs) 25
Isolate Application Runtimes 25
Secure Installers with Authenticode Code Signing 25
Protect Application Features 25
Deploy Unlimited Web Updates 25
Improve the End-User Experience 25
Leverage One-Click Incremental Patching 26
Build Logo Certifiable Installers 26
Rapidly Customize Installers for Product Editions 26
Communicate with End-Users 26

Enterprise Information Technology Scenarios 27
Allow Partners to Customize Their Own Installers 27
Lock Down Installers to Only Run Inside a Network 27
Use Silent Installs for Automated Software Distribution 27
Group Policy Deployment 27
Shell to and Repackage Installs 28
Allow Non-Administrative Installs 28
Use Advertising for Install-On-Demand and Self-Healing 28

ADDITIONAL RESOURCES 29

ABOUT INSTALLAWARE SOFTWARE CORPORATION 29

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 1

Overview

This whitepaper describes how to use InstallAware for deploying applications running on the Microsoft

.NET Framework. Although the .NET Framework makes deploying applications easier thanks to features

like the Global Assembly Cache, which eliminates shared resource conflicts often encountered by Win32

applications, there are still unique challenges to the deployment of .NET applications. One significant

challenge is the download and installation of the .NET Framework, which requires considerable bandwidth

and increases the setup package size dramatically. InstallAware addresses this challenge using a

combination of unique deployment technologies, including WebAware Installations, superior compression,

and MSIcode scripting.

InstallAware’s unique WebAware Installation technology is used to isolate application runtimes from the

main setup program, while still providing a self contained installer that works without mandating an

Internet connection. This technology works well with the .NET Framework runtime, greatly simplifying

deployment by downloading and installing the runtime only when called by the setup.

Another key InstallAware technology is the superior LZMA/BCJ2 compression, which pre-processes data

using call jump converters to increase compressibility, and then compresses the optimized data streams

using a very large 32 MB data buffer. The LZMA/BCJ2 algorithm is so efficient that it reduces the size of

the .NET Framework to literally half its already compressed size.

While offering new and unique technologies, InstallAware is completely standards based — every

InstallAware setup is a pure Windows Installer (MSI) package that can execute directly, without requiring a

third-party scripting runtime to be previously installed. Windows Installer is the only Microsoft approved

installation technology and is a requirement of Microsoft logo certification programs. It offers several other

advantages such as elevated-privilege installations in high-security contexts and automated corporate

deployment using Active Directory Group Policy. These benefits make MSI packages the only accepted

software distribution format for large enterprises.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 2

Creating a .NET Project

To create a simple .NET Project using InstallAware, perform the following steps.

1. Click the InstallAware button on the top left corner of the IDE window, then choose New Project

 .NET Setup on the application menu. The New Project window is displayed.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 3

2. The .NET Setup project type is pre-selected. Additionally, the New Project window lists other

types of templates, wizards, sample projects, and project converters.

3. Under the Project Name field, accept the default value of My dotNET Setup, or provide your

own project name. Projects are normally created under your My Documents folder, and reside

inside their own subfolders. If you would like to use a different folder, enter that folder name here,

or use the suggested value. Click OK when you’re ready to create the project.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 4

4. The IDE has now created a new setup project from the chosen template, and displays the

Welcome Page in the MSIcode tab. Various other pages are available allowing you to view the

complete source code of our setup project. You can take a look at these source codes later, once

the basic setup has been built. To get started, choose the Design tab switch to the Design Views

which you’ll be using to create your setup.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 5

5. The Application Information designer appears, providing a summary of the various designers

that have been categorized under this heading. In the InstallAware IDE, each designer is

categorized under a particular heading for easy access. All available headings and designers are

listed on the tree view at the left of the IDE, and also in the View group of the on the Design tab.

Clicking a heading or a designer switches to that design view. Designers perform a variety of

installation tasks – from basic steps like copying files and creating registry keys, to complex

operations like installing application runtimes, hardware drivers, running SQL scripts, and more.

As you work with the designers, they seamlessly add to and update the underlying MSIcode

sources of your setup. Remember – the designers provide a rapid way to prototype the basic

behavior of your setup, but you are not restricted to what they offer. The full power and richness

of the MSIcode scripting language is always just one click away.

Take a moment to review the Application Information heading. It provides links to the designers

it contains, along with their brief descriptions. The See Also section provides links to related

designers under other headings.

When you’re ready, click the Project Properties link to access the first design view we’ll be

working with.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 6

6. The Project Properties designer allows you to make high level changes to the installation, such as

choosing the default Target Folder, and the default Shortcut Folder. The $PROGRAMFILES$

variable is displayed in the Target Folder field. It represents the location of the Program Files

directory on the destination computer. InstallAware denotes variables by enclosing them within

dollar signs, in the form $VARIABLE$. Variables are defined and modified in the script that

remains accessible from the MSIcode view.

In InstallAware 7, the Receive Application Updates check-box lets you serve unlimited

application updates to your user base after you ship your product. If you are interested in this

functionality, check this box and choose the Web Updates heading for more information.

Also remember that help in the InstallAware IDE is never more than one button away. At any time

you are confused or need more information, just press F1. Context sensitive help guides you

through the current design view, MSIcode command, or whatever else you may be doing at the

moment.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 7

7. The remainder of the design views may be accessed by clicking their names on the left of the main

IDE window. You may skip the Summary Information designer for this project. The summary

information is recorded directly into the MSI database (Windows Installer package) that will be

created by InstallAware, and is visible in Windows Explorer when the MSI file is right-clicked.

You may wish to update the default values provided by the .NET setup template to ensure that

they accurately reflect your company and product information.

8. Now click Add-Remove Programs to switch to this designer which customizes how the

application is shown in the Control Panel | Add-Remove Programs applet.

You may also customize the icon of the setup package here. Click the Load Icon button to load

any icon that represents your application. You are free to use icons of any color and pixel depth

that are supported by Windows. Edit the other fields as necessary to reflect your company and

website information.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 8

9. Click Application Requirements.

The Application Requirements designer helps you enforce any run-time hardware or software

requirements that your application may have. Windows 98 has already been selected as the

Minimum Operating System, since the .NET Framework is not supported on Windows 95.

Internet Explorer 5.01 Service Pack 1 has been selected under Minimum Internet Explorer

Version, which is another requirement of the .NET Framework. If your .NET application has

other requirements — such as memory, resolution, color depth, or IIS version, set them here. You

may also encrypt your entire setup payload with a global password on this screen. Simply provide

a password for the Setup Password field, and InstallAware encrypts your application files and

data using strong 256-bit AES encryption. In InstallAware 7, the Special Requirements section

lets you configure additional options for your setup. You may force your application to install only

on real hardware – disallowing instances on Virtual PC or VMware virtual machines. You may

put setup in native 64 bit installation mode, requiring native 64 bit hardware. You may also check

Administrator Privileges, if your application requires an administrator account to run

successfully. However, InstallAware installations work without administrator privileges, even if

they copy files to protected system folders.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 9

10. Click Application Runtimes.

The Application Runtimes designer lets you add runtimes required by your product to your setup

with the click of a single check-box. The .NET setup template has pre-selected .NET Framework

2.0 for you, together with Windows Installer 3.0 which is required by .NET Framework 2.0. If

your .NET application requires the older .NET Framework 1.1, simply uncheck these runtimes,

and then check the .NET Framework 1.1 runtime. Doing so will also automatically include the

Windows Installer 2.0 runtime, which is required by .NET Framework 1.x. Any time you choose

an item on this list, its dependencies will be selected as well, taking the guesswork out of complex

runtime installations.

Notice the Options button on this screen that is currently disabled. This button will be

automatically enabled when you highlight an application runtime with configurable options. For

instance, this button lets you configure the instance name to test for (and install, when not found),

when the Microsoft SQL Server Express 2005 with Service Pack 2 runtime is checked and

highlighted.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 10

11. Click Features. This designer takes us under the Setup Architecture heading.

The Features designer lets you define the logical components of your product, as will be seen by

end-users when they are installing your product. For the hypothetical application here, two

features have been defined: Visual Notepad, corresponding to the main application, and

Shell Extension, an optional sub-feature of Visual Notepad.

Define the logical components of your .NET application here, along with their descriptions. You

may also use the Up/Down arrow buttons to reorder the appearance of your setup features. If your

application does not have any configurable features, simply skip this designer. In that case, you

may want to remove the pre-defined feature (called My dotNET Setup in our template

project), and uncheck the feature selection and setup type dialogs (called componentstree

and setuptype) in the Dialogs designer, so they are not shown during the installation wizard

sequence.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 11

12. Click Files.

Files may be added to a particular feature of your setup, or unconditionally to the entire

installation. Check the Filter Files by Feature check-box to activate the feature selection combo-

box on this screen. Then choose Feature Independent to unconditionally install files, or select

the particular feature you wish to add files into.

To add an entire folder to your setup, browse to that folder using the directory browser, and click

Add Folder. To add files, first browse into the folder containing the files to add, and then

highlight all the files to add, clicking Add Files when ready. In InstallAware 7, you may also

drag-drop files directly from Windows Explorer into any folder to install them there.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 12

Notice the list of variables that are displayed under the Target Folders list. $TARGETDIR$

is a special variable which indicates the destination directory chosen by the user at install time.

You may also choose another pre-defined location, such as $WINSYSDIR$ for the system

directory or $WINDIR$ for the Windows directory.

You may display more pre-defined folder locations on this list. Right-click the view and choose

Add System Folder. Then, choose the special folder to add, such as the My Documents folder of

the end-user. This way, you may directly install files to a variety of pre-defined system folders on

the target machine.

Once you’ve added some items to the Target Files listing, it’s easy to make further changes.

Just double-click the item to update, or highlight multiple items, right-click, and choose Edit

Files.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 13

The Install Files dialog box appears, allowing you to fine tune the settings of the items being

installed.

This dialog box controls many advanced settings for installing files. You may edit the Source

Files field and specify any wildcard pattern for installing files (for any folders you added above,

this field contains the mask *.* which means “everything”). You may edit the Exclude

Wildcards field and specify a mask of files to ignore when building your setups. You may edit the

Target Folder field and change the destination directory of files being installed. For instance, to

copy files to a subfolder of the user chosen directory, you would enter

$TARGETDIR$\subfolder in this field. You may self-register files at install time by

checking the File is Self Registering DLL check-box. If the files you are installing are shared by

more than one application, be sure to check the Shared DLL File field in this dialog box. Review

the other available options and check the ones as required by your application.

When you’re done making your changes to your files, click OK to continue.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 14

13. Next focus on the Registry designer to create the registry entries required by your application.

Click Registry.

The hypothetical application has some registry entries defined under the Shell Extension feature.

These were imported from a self registering COM server using the Import button. Use the

Import button to import registry data from a .REG file or a self registering COM server (of

course, you may also elect to check the File is Self-Registering DLL check-box in the Install

Files dialog to register your servers).

The remainder of the Registry designer works much the same way as the Files designer. Expand

keys under the Source Keys heading, click the Add Key button to add entire keys together

with their subkeys, and click the Add Values button to add a selection of values. Customize keys

and values by double-clicking the item to update, or highlight multiple items, right-click, and

choose Edit Value. Adding registry elements to specific features of your application is again

possible using the Filter Keys by Feature check-box.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 15

14. Click Shortcuts.

The Shortcuts designer displayed here already contains one entry for uninstalling the example

application. Existing entries are removed using the Delete button, and customized using the Edit

button. To add a new shortcut, click the New button.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 16

The New Shortcut dialog box allows to easily define shortcuts, and can place them in frequently

used system locations such as the Quick Launch toolbar and the Desktop, at the click of a single

check-box. You don’t need to memorize your application paths to populate the Shortcut

Target field either – just click the Browse button to visually locate the file that the shortcut

should point to.

You may type any value in the Shortcut Target field – you are not limited to the list of files

you are installing with your application (as shown by the Browse button). You may type a path to

a pre-existing file on the target system, or even enter a URL. To create a shortcut that launches a

URL in the default system browser, simply type in the full URL path inside the Shortcut

Target field, instead of a file path. For instance, if your website is http://www.mysite.com/, and

you wish to create a shortcut to your site, enter http://www.mysite.com/ in this field.

Click OK to save your changes.

15. We’ll skip the remaining two designers under this heading. Choose the Dialogs designer, under

the User Interface heading.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 17

The Dialogs designer lists each wizard panel that will be displayed by your installer at run-time.

Clicking the Edit button customizes a dialog in the dialog editor (every aspect of each dialog is

fully customizable). The check box option next to each dialog name determines if the dialog is to

be shown during the installation. The Change Theme button lets you instantly switch to a

different set of dialogs — 15 unique themes are available, and you may build your own.

Feel free to explore the remaining designers on your own –our hypothetical application does not

need them. We now skip ahead to the Deployment section.

16. Choose Build Settings under the Deployment heading.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 18

InstallAware offers three build options, the last of which is especially useful for deploying .NET

applications. The Uncompressed Directory Layout option builds your setup files without

compressing them, and creates multiple directories in the build folder as part of the process. This

option is ideal for CD/DVD distributions. The Compressed Single Self-Installing EXE option

packages the application files inside a single downloadable EXE file, so you do not have to worry

about distributing multiple folders. The Compressed Web-Based EXE option enables Web

Media Blocks, which enable you to optimize your download package by taking out the optional

components from the main setup file. Once you’ve chosen this option, switch over to the Web

Media Blocks designer to explore this build option in detail.

17. Click Web Media Blocks.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 19

The Web Media Blocks designer lets you define the different parts that your setup file can be split

into. This is a unique and critical benefit of InstallAware, and makes Partial Web Deployment

(also called WebAware Installation) possible. In the .NET template project, there are two pre-

defined Web Media Blocks, in addition to the main setup file. The Microsoft Windows

Installer 3.0 web media block seamlessly downloads and installs the Windows Installer

runtime, if it is not found on the target system. Similarly, the Microsoft .NET Framework

2.0 web media block downloads and installs the .NET Framework. Files added to the setup using

the Feature Independent are included with the main installer file — allowing the installer to

always install those files, even if an Internet connection is unavailable. The remaining Web Media

Blocks correspond to the features that you have created for your setup. When setup is running, it

will attempt to download Web Media Blocks only if the corresponding runtimes are missing

and/or the connected features have been chosen to be installed by the end-user.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 20

18. On the Project tab, in the Build group, click Web Deploy and wait for the build process to

complete. Then click Output Folder Folder in the same group. You should observe that the

following three files have been created as the result of the build:

• My dotNET Setup.exe: This is the main setup executable, which contains the installer

and the feature independent files for the setup project.

• Microsoft .NET Framework 2.0.7zip: This is the Web Media Block that contains

the .NET Framework 2.0.

• Microsoft Windows Installer 3.0.7zip: This is the Web Media Block that

contains Windows Installer 3.0.

Other Web Media Block files may also exist; based on the features you defined for your setup, and

whether or not they contained any files.

To tell the installer where to find the Web Media Blocks at runtime, double-click a Web Media

Block in the Web Media Blocks designer. The Define Web Media Block dialog box appears.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 21

Populate the Download URLs list to point the installer to one or more actual download locations

at run-time. Web Media Block files do not have any special server requirements. Simply make

them available for download as ordinary files at the indicated URLs, and the installer will obtain

them on-the-fly. Using more than one URL increases scalability and reliability. If your web server

does not serve 7zip files due to security restrictions, you may rename the extensions of the created

Web Media Block files to an approved extension, and upload them accordingly. Just make sure the

Download URLs list points to the exact locations of the files on the server, including the file

extensions – the initial file name of the Web Media Block as created by the build process is not

important. You may also specify FTP sites, network locations, or other file sources (not

necessarily Internet locations) among the URLs to be used. Your InstallAware installation will

obtain the Web Media Blocks successfully if the target machine can “download” them from one of

the specified URLs. Using Internet Explorer (or your favorite browser) on the specified URLs is a

great way to test that Web Media Blocks are uploaded correctly and being served.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 22

If you would like to save time during builds, you may also check the Skip on Build check-box.

This is a very convenient option, especially for application runtimes that do not change in between

different builds of your own application. When Skip on Build is checked, InstallAware will not

copy any files belonging to that Web Media Block, nor will it compress any data in that Web

Media Block, effectively eliminating that part of the setup from the build process, and therefore

improving build speed. As long as you have a pre-built copy of that web media block, you may

skip it during builds and save time.

InstallAware 7 also offers the option to individually encrypt each Web Media Block using 256 bit

strong AES encryption. Just populate the Password field to turn on encryption. Individually

encrypting each Web Media Block makes it harder for your setups to be compromised with the

loss of a single global password, as each Web Media Block can potentially be using a unique

password.

Coupled with the superior compression provided by the InstallAware engine, Compressed Web-

Based EXE builds provide the industry’s leading solution for online software distribution. With

the new individual encryption options and URL lists in InstallAware 7, online software

distribution becomes even more reliable, scalable, and secure.

You may notice that when you perform a CD or Single File build, Web Media Blocks are not

created, even though they have been defined; this makes it easier to build for multiple media types

when generating your setups. In fact, you can click Batch Build in the Compile group on the

MSIcode tab to build for multiple media types in one pass. Just select each desired build type.

19. Finally take a peek at the setup script, which has been automatically generated and maintained for

you so far by the visual designers. Choose the MSICode tab, and then choose the My dotNET

Setup page next to the Welcome Page.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 23

On the top left combo box, choose Apply Changes. On the top right combo box, choose

Install Product. This takes you right to the place in your script where most of the install

actions take place.

Look around the script. This script is a genuine programming language, called MSIcode.

MSIcode provides complete branching code execution for Windows Installer, another unique

benefit of InstallAware, also called Genuine Scripting for Windows Installer. Not only does this

feature make developing setups easier — it also eliminates the design overhead by providing a

simpler development model than is ordinarily possible with Windows Installer. You simply author

your human readable MSIcode script, using either the Design Views or the MSIcode view, and

InstallAware produces a logo compliant MSI for you automatically at build-time. MSIcode is the

easiest way to describe the content and logic of an MSI database, significantly simplifying the

setup development process, and reducing development, maintenance, and support costs for your

setups.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 24

Also notice the Install Files, Create Shortcut, and Write Registry commands in the script. You

will recall them from the edits we made in the Files, Registry and Shortcuts designers. The

InstallAware IDE features two-way integrated code editing, so that when you make changes in any

of the Design Views, the changes are always reflected in the MSIcode view, and vice versa. This

allows you to rapidly prototype your setup in the Design Views, and then switch to the MSIcode

view to fine-tune your installation. When you build your setup, the resulting installer will always

be a logo certifiable MSI installer database — InstallAware takes care of the necessary MSI table

insertions and MSI sequences for you. Absolutely no custom action authoring is required with

InstallAware!

There are many more MSIcode commands to try – just scroll the list on the right of the script

editor. Each command executes a specific installation task, saving you countless hours of custom

development effort. You may drag-and-drop commands from there into the setup script, or select a

line in the script editor and simply type the first few letters of a command – this activates smart

code completion. The script editor features all modern conveniences such as copy/paste,

find/replace, and more. You may even use code folding and define your custom code folding

regions to organize your setup script.

20. This concludes the creation of your .NET application installation. Make ample use of the available

Design Views and MSIcode to refine your setup, and ship when ready!

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 25

Deployment Scenarios

Independent Software Vendors (ISVs)

Isolate Application Runtimes
Most ISVs distribute their setups on the Internet. This means downloads have to be as small as possible —

smaller files mean more downloads and less bandwidth consumption. Especially for .NET applications, the

standard 23 megabyte size of the .NET Framework can be a huge problem. InstallAware works around this

problem by both stripping runtimes from the main product download, and also by using superior

compression to reduce the .NET Framework size to only 12 megabytes.

Secure Installers with Authenticode Code Signing
Especially with the release of Windows XP Service Pack 2, and the upcoming Windows Vista, users are

cautioned strongly against installing packages that aren’t digitally signed. InstallAware supports

Authenticode code signing technologies to verify the integrity of downloaded content.

Protect Application Features
ISVs can use Web Media Blocks to strip crucial application components from their public downloads.

Using scripting, the installer can query user and system information to verify that the end-user is eligible to

install protected features. Only if the user is authenticated (by, for example, querying a web page with user

credentials), will the installer proceed to download the protected Web Media Blocks.

Deploy Unlimited Web Updates
In InstallAware 7 is the ability to deliver unlimited updates to your users over the web. The update

experience closely resembles that of Windows Update – displaying standard message balloons in the

system tray (even on old Windows versions that do not support tray balloons), and customizable dialogs

that configure the update schedule, list available updates, and install them.

Improve the End-User Experience
InstallAware present a single, unified user interface during the entire setup process. Separate install wizards

or progress windows are never shown when launching custom third party installers and/or configuring

application runtimes. InstallAware even natively captures and displays the progress of lengthy runtime

installs like .NET Framework 2.0 in your InstallAware setup wizard, improving the user experience.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 26

Leverage One-Click Incremental Patching
InstallAware provides a one-click patching mechanism that works by building a patch against older

versions of the installer. This is done by simply showing the setup project where the older installer files of

the product are found. When a patch is built, it contains only the minimum incremental data required to

bring a product up-to-date with the latest installation files. Incremental patching saves developers and end-

users time and effort in updating their current installers.

Build Logo Certifiable Installers
Microsoft’s Designed for Windows logo program provides ISVs with a way to certify the stability,

reliability, and quality of their solutions. Most enterprises today will not even consider software titles that

do not have a logo certified MSI installer, for reasons of automating and securing their corporate

deployment. For any product to pass testing for the Designed for Windows logo programs, an MSI installer

for that product, with the following features, is required:

• No ICE (MSI database internal consistency evaluator) errors must be found

• MSI databases should support advertising

InstallAware setups are automatically logo compliant. No matter how complex or simple the setup script,

the output MSI files always pass ICE tests, and support advertised installations.

Rapidly Customize Installers for Product Editions
ISVs typically produce several editions of their products, tailored for different market and user segments.

Because these products rely on the same core, their installers are often very similar. Typically the highest

edition features the most complex install, with files and logic being stripped away progressively as the

product editions are traversed. Instead of building and maintaining multiple installs for each edition,

InstallAware lets developers define compiler variables, which work much like IFDEF statements found in

programming languages. Based on the values of these compiler variables, parts of the setup script can be

excluded from the build process, thereby emitting customized installers with absolutely no manual effort.

Communicate with End-Users
InstallAware makes it very easy to build custom dialogs that capture any kind of information from the end-

user at install time. Simply use the dialog editor and customize an existing dialog, or build your own from

scratch. Use edit boxes, drop-down combo boxes, radio buttons and check-boxes to interact with end-users

and survey them as an integral part of your installation – not on a web form where they can walk away

from your download. Seamlessly submit captured information to a web server. Ask end-users where they

found about your product, why they are uninstalling, and more!

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 27

Enterprise Information Technology Scenarios

Allow Partners to Customize Their Own Installers
InstallAware features a COM automation library, along with an ASP scripting object that enables access to

that library from ASP web pages. Using COM automation, enterprises could programmatically emit

complete setup projects and scripts, and then build them on-the-fly in response to partner requests. For

instance, consider an enterprise product that is made available to a large number of resellers, each with its

own language and branding requirements. A web site could be built where resellers could upload their

custom text and branding images. Then, when the Build Installer button is clicked, InstallAware automation

could be invoked to dynamically build a customized installer, which would make the custom setup

available for download as soon as the build process finished. This would reduce the burden on an enterprise

when supporting its resellers.

Lock Down Installers to Only Run Inside a Network
InstallAware’s Web Media Blocks are able to download files not only from the Internet, but also UNC

paths. Where sensitive application and data are involved, an installer could be built that placed all its

contents inside Web Media Blocks, and those Web Media Blocks placed on locations accessible only inside

the corporate network. Even if these installers were to be “stolen”, they would not actually work, since they

would attempt to download Web Media Blocks from a location that would not exist on an outside site.

Use Silent Installs for Automated Software Distribution
Installing and maintaining applications deployed onto thousands of computers on a corporate network can

rapidly escalate into a maintenance nightmare. Because InstallAware installations are Windows Installer

based, they conform and interoperate well with large scale corporate deployment scenarios. Applications

can be silently installed, removed, and monitored — all without user intervention or knowledge. Log files

can be created from installations to provide additional debugging data in case deployment problems arise.

Group Policy Deployment
InstallAware setups are fully compatible with Active Directory deployment using Group Policy, as well as

other automated deployment technologies. Push installers onto thousands of desktops with a single click.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 28

Shell to and Repackage Installs
Typically, when deploying older software, corporate administrators are required to convert old and non-

standard package formats into the MSI package format. Even when working with MSI based installers,

packages may need to be installed with a precisely defined set of configuration settings, to ensure proper

operation. InstallAware addresses both these needs. InstallAware’s Shell to MSI technology enables the

execution of any MSI package, with a specified set of configuration settings, as an integral part of a larger

software installation process. In fact the Shell to MSI process is so efficient that it even captures the

progress of the spawned installation. With non-MSI packages, the PackageAware tool that ships with

InstallAware provides a migration path: PackageAware takes before and after snapshots of the state of the

system as a legacy package is installed. It then encapsulates the delta of the system snapshots in a ready-to-

build, customizable InstallAware setup project. Both these technologies enable seamless and painless

installations of large numbers of interdependent packages across the entire corporate network.

Allow Non-Administrative Installs
Since InstallAware setups are Windows Installer based, they automatically leverage the ability of Windows

Installer to perform low level changes to the system even when administrator rights are not present. As long

as the Always Install Elevated group policy has been defined by the corporate administrator for user

accounts, all InstallAware installations will successfully install inside locked-down user environments,

making it unnecessary for a system administrator to manually log on and install the desired product on the

system.

Use Advertising for Install-On-Demand and Self-Healing
Advertising is a Windows Installer term for two similar concepts:

1. An installation that runs in advertised mode creates shortcuts, registers file types, and creates

registry entries required by the product — overall creating the impression that the application has

been installed. However, it does not actually copy any files, until the application has been invoked

for the first time, from either the Start Menu, or by double-clicking its associated file in Explorer.

2. Advertised shortcuts and file types both enable the above behavior, and also repair a damaged

application by copying missing files whenever they are invoked. They do this by checking that all

required files are present when they are being invoked.

InstallAware setups fully support both of these advertising technologies. Plus, InstallAware adds the

capability of storing each feature of an advertised installation as a Web Media Block to seamlessly

download it on-demand from any desired URL.

Using InstallAware 7 To Deploy Microsoft .NET Framework Applications

Page 29

Additional Resources

Please visit the InstallAware website publications section at the following URL for more information on

InstallAware technologies:

http://www.installaware.com/home/publications.asp

Whitepapers providing an in-depth analysis of InstallAware’s scripting and web deployment technologies,

as well as a Reviewer’s Guide, are available at the above URL.

About InstallAware Software Corporation

Focusing solely on the Windows Installer (MSI) platform for Microsoft Windows operating systems,

InstallAware is the premier provider of software installation tools for Internet deployment. Founded in

2003, InstallAware is supported by thousands of users worldwide, and is a Borland Integrated Partner. For

more information, visit www.installaware.com.

Copyright© 1996-2007 InstallAware Software Corporation. All rights reserved. All InstallAware brand and product names are
trademarks or registered trademarks of InstallAware Software Corporation in the United States and other countries. Microsoft,
Windows, and other Microsoft product names are trademarks or registered trademarks of Microsoft Corporation in the U.S. and other
countries. All other marks are the property of their respective owners. Corporate Headquarters: 336 Guerrero Street, San Francisco CA
94103-3332 · 415-358-4094 · www.installaware.com · sales@installaware.com

